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Quasistatic principles in the macroscopic electrodynamics of bianisotropic media
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Only very few theoretical results in macroscopic electrodynamics of bianisotropic composites have neces-
sary experimental justifications. This fact, it seems, is not accidental. Artificial bianisotropic materials based on
a composition of helices andV particles do not meet the requirements of macroscopic electrodynamics of
condensed media. Our standpoint is based on the principle that in the description of the electromagnetic
properties of a bianisotropic medium, one has to be able to separate the microscopic and macroscopic levels of
consideration. In other words, specific properties of a bianisotropic medium should be defined separately from
macroscopic Maxwell’s equations. In this paper we formulate some principles that should underlie the main
laws of macroscopic electrodynamics of bianisotropic media. Our consideration is based on the notion of two
types of dual quasistatic~quasimagnetostatic and quasielectrostatic! bianisotropic particles.
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PACS number~s!: 41.20.2q, 03.50.De, 62.65.1k, 81.05.Zx
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I. INTRODUCTION

At present, the electrodynamics of bianisotropic artific
media~and chiral media, as a particular case! is developing
extensively. We are witnesses to a vast number of publ
tions concerning different aspects of the electromagn
theory of these media. For any newcomer in this area
science, two main theoretical questions, it seems, arise:~a!
how to calculate the effective-medium~continuum! param-
eters~linear and nonlinear! of artificial bianisotropic media
and ~b! how to solve classical electrodynamics proble
~scattering, diffraction, etc.! in different structures with bi-
anisotropic materials. If, however, this newcomer is attent
enough, it will be seen that~at least in the microwave region!
a large list of theoretical papers on the electrodynamics
bianisotropic media is accompanied by a not so high num
of experimental works. Moreover, only few theoretical r
sults have the necessary experimental justifications. Mai
there are experiments to demonstrate the ability to rotate
plane of polarization of the electromagnetic wave, the refl
tion, and transmission coefficient measurements. One can
that these experiments are far-zone, or at least intermed
zone, reflected field investigations. To the best of the
thor’s knowledge, there are no experimental works on mic
wave bianisotropic structures~the structures that contai
materials described by bianisotropic constitutive relations! to
verify theoretical results concerning near-zone~quasistatic!
reflected field investigations. Nobody has published exp
mental works of stratified bianisotropic media, dispers
characteristics of bianisotropic rectangular, or strip-li
waveguide structures, field singularities at edges in bian
tropic media, etc. Is this lack of microwave experiments
cidental? Is the fact that now, after ten years of intens
research in this area of science, no known microwave
vices based on chiral and bianisotropic materials work
such accidental as well@1–5#?

In the microwave range, chiral and bianisotropic materi
are particulate composites. Artificial chiral media~based on a
composition of small helices in the host material! were de-
veloped to demonstrate the phenomenon of the electrom
PRE 581063-651X/98/58~6!/7965~9!/$15.00
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netic activity at microwave frequencies, analogous to the
tical activity. As a further generalization of such med
artificial bianisotropic materials based on a composition
helices andV particles were introduced as well. It becom
clear, however, that these composite materials are beyond
laws that form the basis of macroscopic electrodynamics
condensed media.

The main principles of macroscopic electrodynamics
based on the fact that one can separate the microscopic
macroscopic levels in the description of the electromagn
properties of a medium. Because of the natural scale
lengths in media, one can use only those variables that h
the Fourier-spectrum components in thek space~of the elec-
tromagnetic waves in a medium!, up to some limiting cutoff
wave numberK (1/K corresponds to the maximum scale
material nonhomogeneity!. In other words, only those Fou
rier components withk,K are relevant to the macroscop
problem. If

k!K, ~1!

we can almost certainly treat a system as a continuum.
lation ~1! ~which Robinson characterized as the truncat
process@6#! is, as a matter of fact, the quasistatic appro
mation. The field vectors and constitutive parameters in
macroscopic Maxwell equations are obtained on the basi
the averaging procedure on scales much less than the
roscopic wavelength. Because of the averaging proced
the electromagnetic boundary conditions can be introdu
on interfaces of condensed media@7,8#.

Do chiral materials and bianisotropic composites based
helices andV particles meet the requirements of the ma
principles of macroscopic electrodynamics? Are we able
separate the microscopic and macroscopic levels in the
scription of these materials, as it is usually assumed in m
roscopic electrodynamics? One can see that in chiral ma
als and bianisotropic composites, the fact that the phas
the electromagnetic wave is different for different parts o
particle is essential, that is, nonlocal effects in these me
are essential. A special feature of these materials is tha
7965 © 1998 The American Physical Society



ac
ic
al
nl
en
a

li

n
w
ak
si
n

an
er
ti-
ry

he
ve
on

u

B
ob
s
c

th

tro
a

m
c
en
m
f

-

te

n
fo
to

om

e

l

un-
oxi-
e

e
ne
n of
we

os-
e
logi-
n-
ics
rth
ons,
e-

he
pic
lute

the
pic

his
eti-
site

on
e-

ax-
the
e
the

for
The
pic

rip-
i-
s
ort-
g-
zo-
d

n
y

hat

be
ep-
r
-

y
III.
o-

7966 PRE 58E. O. KAMENETSKII
introduce constitutive relations that in fact connect the m
roscopic field vectorsnot separately from the macroscop
Maxwell equations. For this reason, the parameters of chir
ity or bianisotropy are, at the same time, measures of no
cal effects. The authors of numerous works where differ
electrodynamics problems with chiral and bianisotropic m
terials~described by the constitutive relations! are solved for-
mally analyze these problems as if no aspects of nonloca
exist. Here are some curious examples.

There is a well known problem in electrodynamics co
cerning correct boundary conditions to match fields on t
sides of the layer with nonlocal properties. One has to t
into account that because of the effects of spatial disper
the order of differential equations increases. This dema
the use of the so-called additional boundary conditions~to-
gether with the electrodynamical boundary conditions!. Such
boundary conditions do not have a universal character
are found on the basis of the microscopic theory. For diff
ent types of interfaces~in plasma, ferromagnetics, and op
cally active crystals!, one has different additional bounda
conditions@8–11#. For chiral andV materials, this problem
is solved very ‘‘simply.’’ One can see, for example, that t
symmetrical form of the Drude-Born-Fedorov constituti
relations makes it possible to obtain the boundary conditi
requiring the continuity of tangential components of theE
andH fields across the bimaterial interface, but not contin
ity of the normal components of theD andB fields. This is
explained by Lakhtakia~see @2#, p. 136! as follows. The
boundary conditions on the normal components of theD and
B fields are necessary and sufficient for static problems.
cause electromagnetic chirality cannot exist for static pr
lems, it is very satisfying that the Maxwell curl postulate
unaided by extraneous considerations, give rise to the ne
sary and sufficient boundary conditions that involve only
E andH fields.

This statement infringes the laws of macroscopic elec
dynamics, which require four boundary conditions to be s
isfied: two for the tangential components of theE and H
fields and two for the normal components of theD and B
fields. If the boundary conditions involve only theE andH
fields, one cannot distinguish, for example, the proble
with and without a surface charge density at the interfa
Moreover, what does the continuity equation for charge d
sity and current density mean in such a case? It beco
apparent that many boundary problems solved recently
chiral media and bianisotropic composites~for example, an
analysis of singularities in Green’s dyadics@12–15#, field
singularities at edges@16#, @17#, waveguide step discontinui
ties @18#, and many other boundary problems! are far from
physical reality and may be considered as examples of in
esting but abstract~from a physical point of view! ap-
proaches. Doubt is cast on the validity of the formal exte
sion of the known electrodynamical problems solved
isotropic and anisotropic materials with local properties
such nonlocal media as chiral media and bianisotropic c
posites based on helices andV particles.

We can see that because of the space-resonance prop
of composites based on helices andV particles~caused by
the first-order role played by the size parametersqa in the
emergence of the magnetoelectric properties; herea is the
particle size andq is the wave number in the host materia!,
-
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it is impossible to use the procedure of wave-number tr
cation and the averaging procedure. The quasistatic appr
mation ~1! does not work in this case. An analysis of th
known properties of chiral andV particles shows that thes
particles are not quasistatic oscillators. Only in the far-zo
region can one consider these particles as a combinatio
the electric and magnetic dipoles. In the near-field zone,
do not have a combination of such dipoles@19–21#. This is
the main reason why constitutive relations used for comp
ites based on helices orV particles characterize, in fact, th
gas of scatterers. We have an example of a phenomeno
cal description of a diffraction structure rather than a co
tinuous medium. The laws of macroscopic electrodynam
are not completely applicable in this case. This puts fo
questions about generalized susceptibilities, energy relati
boundary conditions, etc., for microwave bianisotropic m
dia.

It becomes clear that for bianisotropic artificial media, t
main propositions that underlie the laws of macrosco
electrodynamics should be considered. In contrast to di
bianisotropic composites based on helices andV particles,
we introduce the notion ofcondensed matterbianisotropic
composites. Evidently, one cannot talk at present about
macroscopic electrodynamics of microwave bianisotro
media until the electrodynamically macroscopic~condensed
matter! bianisotropic materials have been synthesized. T
problem, however, cannot be solved until the main theor
cal principles of condensed matter bianisotropic compo
materials have been formulated. Our standpoint is based
the principles that specific properties of a bianisotropic m
dium have to be defined separately from macroscopic M
well’s equations. Because of this possibility to separate
field and medium equations~in other words, to separate th
microscopic and macroscopic levels in the description of
electromagnetic properties of a medium!, the so-called ef-
fects of temporal and spatial dispersion can be considered
media characterized by specific time and space scales.
main point is that the constitutive parameters of bianisotro
media should be describedquasistatically ~quasimagneto-
statically or quasielectrostatically!.

The main concept that underlies our microscopic desc
tion of bianisotropic media isthe concept of magnetostat
cally and electrostatically controlled bianisotropic particle.
These particles are small resonance structures with sh
wavelength~for example, magnetostatic waves in ferroma
netics or elastodynamic quasielectrostatic waves in pie
electrics! oscillations. While the magnetostatically controlle
bianisotropic materials~MCBMs! have been considered i
previous works@22–24#, an analysis of the electrostaticall
controlled bianisotropic materials~ECBMs! is a different
proposition by the present author@25#.

The paper is organized as follows. In Sec. II we show t
the so-called integral-form constitutive relations~ICRs! for
bianistropic media considered in many publications can
used only when microscopically defined generalized susc
tibilities are applicable. As we will show, it is possible fo
such ‘‘local media’’ as the MCBMs or ECBMs, but impos
sible for bianistropic media with nonlocal properties~based
on helices orV particles!. The electromagnetic field energ
in microwave bianisotropic media is the subject of Sec.
In many works, the energy relations in microwave bianis
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tropic media are considered as just an extension of sim
relations used for anisotropic media. A careful analysis, ho
ever, shows that the situation with bianisotropic media
fundamentally different. The notion of quasistatically co
trolled bianisotropic media is essential in this considerati
Section IV is devoted to a discussion about the dynam
perturbation of a system of quasistatic bianisotropic p
ticles, which is a composition of microscopic oscillato
Section V contains concluding remarks.

II. INTEGRAL-FORM CONSTITUTIVE RELATIONS
AND GENERALIZED SUSCEPTIBILITIES

IN BIANISOTROPIC MEDIA

It is known that the effect of optical activity may be cha
acterized in two ways: as a separate phenomenon in so-c
chiral media ~see @1,2# and numerous references in the
books! or as a particular case of a general effect of spa
dispersion in dielectric media@8,9#. For temporally and spa
tially dispersive dielectric media, the ICRs are used. Wh
this medium is time invariant and spatially homogeneous,
dielectric tensore(v,k) can be introduced. In the long
wavelength approximation, the temporally and spatially d
persive dielectric medium becomes only temporally disp
sive, that is, the quasistatic limit (uku→0) exists. One can
take advantage of the power-series expansion of the co
tutive tensor overk in the region nearuku50 @8,9#. We also
have other examples. In disorder dielectric composites, w
the effects of spatial dispersion are taken into account,
long-wavelength~quasistatic! limit is used to compute the
effective permittivity tensor@26–28#.

A calculation of tensore~v,k! in continuous media is
based on a microscopic theory. It may be the quantum
chanical theory based on a perturbation theory and the no
of a generalized susceptibility@8,11,29#. In dipole crystal
lattices, Edward’s method of separation of the lon
wavelength~macroscopic! and the short-wavelength~micro-
scopic! electric fields may also be applied@30#. In the present
author’s recent work@31#, the so-called sampling theorem
was used to develop a dynamical theory and calculate
effective parameters of dielectric crystal lattices.

The ICRs for bianisotropic media may be formally intr
duced in various forms for example, as

Di~ t,r !5~a i j +Ej !1~b i j +Bj !,
~2!

Hi~ t,r !5~g i j +Ej !1~n i j +Bj !

or

Di~ t,r !5~e i j +Ej !1~j i j +H j !,
~3!

Bi~ t,r !5~z i j +Ej !1~m i j +H j !.

On the right-hand sides of expressions~2! and ~3!, we have
the integral operators similar to the integral operator

e i j +Ej5E
2`

t

dt8E dr 8e i j ~ t,r ,t8,r 8!Ej~ t8,r 8!. ~4!
ar
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When a bianisotropic medium is time invariant and sp
tially homogeneous, the ICRs have a temporal and sp
convolution form. For example, for Eq.~3! one can write

D~v,k!5e~v,k!•E~v,k!1j~v,k!•H~v,k!,
~5!

B~v,k!5z~v,k!•E~v,k!1m~v,k!•H~v,k!.

To the best of the author’s knowledge the ICRs for
anisotropic media were introduced for the first time by Ho
reich and Shtrikman for a hypothetical situation of the op
cal effect of gyrotropy in magnetoelectric crystals@32#.
Nobody has realized this situation in physical experimen
The present author used the ICRs to analyze the energy
ance equation in bianisotropic media@33#. Lakhtakia and
Weiglhofer formally considered the ICRs in bianisotrop
media as ‘‘the most general linear relations that can desc
any linear medium—indeed, the entire universe after line
ization’’ @34#. In @35#, the ICRs were used in the theory o
perturbation for an analysis of the effective constitutive p
rameters in a bi-isotropic continuum.

Our standpoint is that we should try to clarify the physic
essence of the phenomena and only afterward build a m
ematical approach based on the physical theory. Otherw
one may obtain abstract mathematical exercises that are
from physical reality. First of all, the question arises, wh
are the physical assumptions to have the convergence o
tegrals in the ICRs for time-invariant and spatially homog
neous bianisotropic media? The reaction of a causal med
is dependent on previous values of the fields because o
finiteness of a time reorganization of all the system of
poles. In fact, such a ‘‘memory’’ is retained during the tim
of system relaxationTr . Therefore, the response function
decrease rapidly fort2t8@Tr . On the other hand, we ma
have a nonlocal connection between the fields and the sys
reaction. The response functions have to decrease when
differenceur2r 8u increases. All this means that we have
consider the influence ofshort-time and short-space electro
static and magnetostatic interactionsbetween particles on
the polarization properties of a bianisotropic medium. In t
case, the kernelse i j (t8,r 8), j i j (t8,r 8), z i j (t8,r 8), and
m i j (t8,r 8) of the integral operators in Eq.~3! ~and, similarly,
the kernels of the operators in other forms of the ICRs! are
the ‘‘responses’’ of a medium to thed-function electric and
magnetic fields.

Based on our consideration, we introduce the notion
the local temporally dispersive bianisotropic media~LT-
DBM!. The LTDBM are characterized by constitutive p
rameters satisfying the long-wavelength~quasistatic! limit.
This means that for constitutive tensors used, for example
Eq. ~5!, one can write@36#

e~v,k!u uku→0→e~v!, j~v,k!u uku→0→j~v!,
~6!

z~v,k!u uku→0→z~v!, m~v,k!u uku→0→m~v!.

When the limit~6! takes place, we can take advantage of
power-series expansion of the constitutive tensors overk in
the region nearuku50. That is, the effects of spatial dispe
sion are considered assmall-order effects, similar to the ap-
proach used in@8–11# for isotropic and anisotropic media.

A full answer to the question whether the LTDBM can b
physically realized or not should be found from a micr
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7968 PRE 58E. O. KAMENETSKII
scopic analysis. To consider the problem of the ICRs on
microscopic level, let us take advantage of the notion o
generalized susceptibility widely used in macroscopic el
trodynamics. In the case of dynamical perturbations of a s
tem, an external action can be described by the exciting
erator in the total Hamiltonian@8,11,29#

Ĥ8~ t !52 x̂i f i~ t !, ~7!

wherexi is a series of quantities characterizing a system,x̂ is
an operator of a given physical quantity, andf i(t) are gen-
eralized forces dependent on time. The average quant
x̄(t) are represented by a linear integral-operator form

x̄i~ t !5E
2`

t

dt8a i j ~ t2t8! f j~ t8!. ~8!

One can rewrite this relation for the Fourier components

x̄i~v!5a i j ~v! f j~v!. ~9!

The functiona i j completely defines the behavior of a syste
under an external action. This function is called generali
susceptibility. When a linear integral relation~8! has the nec-
essary physical foundation, the time variation of the ene
~caused by the external excitation! may be expressed as

dW

dt
52 x̄i

d f i

dt
. ~10!

For a dielectric medium, the functionf may be interpreted
as the external electric field andx as the electric dipole mo
ment induced in this field@8#. Now we extend our consider
ation to the general case of a bianisotropic medium. W
the fields of interactions between particles are described
scalar potentials, one can write for the exciting operator
the total Hamiltonian

Ĥ8~ t !52Ei~ t ! p̂i2H j~ t !m̂j , ~11!

where p̂ and m̂ are operators of electric and magnetic m
ments, respectively. The average quantities are represe
as

p̄i~ t !5E
2`

t

dt8ai j ~ t2t8!Ej~ t8!1E
2`

t

dt8bi j ~ t2t8!H j~ t !,

~12!

m̄j~ t !5E
2`

t

dt8cjk~ t2t8!Ek~ t8!1E
2`

t

dt8djk~ t2t8!Hk~ t8!.

Based on relations~12!, one can write, as a result, integra
form relations~for temporally dispersive bianisotropic me
dia!. So the ICRs formally defined for bianisotropic med
can be reduced to microscopically defined generalized
ceptibilities. This is possible when a bianisotropic particle
found in energy eigenstates and the particle fields can
described by the Hamiltonian and the exciting operator in
total Hamiltonian of a system of particles can be introduc

The notion of generalized susceptibilities obtains a pe
liar sense for the electromagnetic field energy in media. T
time variation of the electromagnetic energy of a bianisot
pic body is expressed as
e
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We correlate this expression with the expression~10! for
the time variation of the energy caused by the external e
tation. One can consider the components of vectorsD andB
as two generalized forces and the components ofE andH as
two series of quantities characterizing a system. Let us s
pose that constitutive relations are written as

Ei~ t !5E
2`

t

dt8ei j ~ t2t8!D j~ t8!1E
2`

t

dt8 f i j ~ t2t8!Bj~ t8!,

~13!

Hi~ t !5E
2`

t

dt8gi j ~ t2t8!D j~ t8!1E
2`

t

dt8hi j ~ t2t8!Bj~ t8!.

Similarly to an analysis made in@8# for anisotropic media,
one can obtain the symmetry relations of constitutive tens
in bianisotropic media. When the components of theE field
from one side and the components of theH field from the
other side are considered independent, we can use the
ciple of kinetic coefficient symmetry~the Onsager-Casimi
principle! @37,38# to characterize the symmetry properties f
constitutive tensors. In this case, we have for tensors in
pression~13!

ei j ~v,H0!5ej i ~v,2H0!,

hi j ~v,H0!5hji ~v,2H0!, ~14!

f i j ~v,H0!52gji ~v,2H0!,

where H0 is the external bias magnetic field. For spatia
dispersive bianisotropic media@33#, these relations can b
extended as

ei j ~v,k,H0!5eji ~v,2k,2H0!,

hi j ~v,k,H0!5hji ~v,2k,2H0!, ~15!

f i j ~v,k,H0!52gji ~v,2k,2H0!.

So for constitutive relations written as

E~v,k!5e~v,k!•D~v,k!1f~v,k!•B~v,k!,
~16!

H~v,k!5g~v,k!•D~v,k!1h~v,k!•B~v,k!,

the Onsager-Casimir principle gives

ẽ5eT,

h̃5hT,

f̃52gT. ~17!

Here a tilde denotes the time reversal andT denotes transpo
sition.

One obtains the following relationship between consti
tive tensors in expressions~5! and ~16!:

@ I2e•e2f•z#21
•@e•j1f•m#

2@g•e1h•z#21
•@ I2g•j2h•m#50,
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where I is the unit dyadic. It is not entirely evident tha
symmetry relations for tensors in expression~5! will have a
form similar to relations~16!. So the formal use of the
Onsager-Casimir principle for constitutive tensors in expr
sion ~5! ~as it has been done in@39,40#! can hardly be ad-
missible. We have shown ‘‘macroscopically’’ that the ICR
are applicable only for LTDBM. Based on the notion of ge
eralized susceptibilities, we also have shown how the IC
are physically admissible on a microscopic level. Now let
apply our analysis to the known types of bianisotropic m
dia.

We can see that LTDBM are distinguished, in princip
from natural magnetoelectric crystals@41,42# and
piezoelectric-piezomagnetic magnetoelectric composites@43#
~which are, as a matter of fact, nontemporally dispersive m
terials!, chiral media and bianisotropic composites based
helices andV particles@1,2# ~which are nonlocal media!, and
moving dielectric-magnetic materials@41,42#. So the ICRs
cannot be applicable for these media.

One can also find other arguments against the possib
of using the ICRs in nonlocal bianisotropic media. In co
ments@45# on Ref. @44# it was pointed out that in nonloca
bianisotropic media, the kernels in cross terms in the IC
are not independent, but proportional to that in the cote
and therefore this leads to double inclusion of the same
fects in the model. Formal use of the ICRs without necess
physical justification may lead to incorrect results. For e
ample, doubt is cast on the validity of the effective consti
tive operators used in@35# to calculate the long-wavelengt
effective parameters of chiral media.

There are other arguments that arise from the notion
generalized susceptibility. Bi-isotropic media, natural ma
netoelectric crystals, and known microwave chiral and
anisotropic composite materials based on helices andV par-
ticles do not meet one of the main requirements
macroscopic electrodynamics of causal condensed me
separation of the microscopically and macroscopically
namical levels of consideration. For these media, one ca
describe a dynamical perturbation of a microscopic sys
by the exciting operator in the total Hamiltonian and the
fore introduce the notion of a generalized susceptibility.
the ICRs are not physically admissible for such media.

We have another situation for MCBMs and ECBMs. T
MCBM particle and the ECBM particle are thequasistatic
oscillators that are found in energy eigenstates. One can
distinguish the internal fields of a particle and the exter
fields and consider excitation of quasistatic oscillations
the external fields@22–25#. Since the MCBMs and ECBMs
are characterized by the quasistatic processes, these m
are LTDDM. One can obtain the Hamiltonian of every pa
ticle and describe the dynamical perturbation of a system
the exciting operator in the total Hamiltonian. So the IC
and the notion of generalized susceptibilities are physic
admissible for the MCBMs and the ECBMs. The Onsag
Casimir principle~17! is applicable to this case.

III. THE ELECTROMAGNETIC FIELD ENERGY
IN BIANISOTROPIC MEDIA

An analysis of the energy balance equation is one of
powerful tools to investigate electromagnetic wave propa
-
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tion in media. For bianisotropic media, the notion of LT
DBM plays a very important role in a physical meaning
the energetic relations. Several important microscopic
pects of LTDBM become understandable based on the e
getic relations.

When a medium is characterized by constitutive para
eters and the wave process is described by Maxwell’s eq
tions, the well known procedure leads us to the energy b
ance equation. For anisotropic media with local propert
one has@8#

2¹W •SW̄ 5
]W̄

]t
1P̄. ~18!

There are fundamental issues that one should be awar
One can interpret the terms in Eq.~18! only for weakly ab-

sorbing media. In this caseSW̄ is interpreted as the average~on
the period 2p/v) Poynting vector,W̄ as the average densit
of the energy, andP̄ as the average density of the dissipati
losses. The dissipation itself may not be so weak, but
dissipation has to be strongly reduced by choosing the
responding frequency region. This means that the field m
be closed to a monochromatic field. On the other hand
derive the energy balance equation, it is insufficient to c
sider pure monochromatic fields since no accumulation
the electromagnetic energy takes place in this case. Th
fore, the quasimonochromatic electromagnetic fields are u
ally considered. The average density of the energy in
~18! has a physical meaning of the internal energy of a bo
in the electromagnetic field similarly to the energy of a bo
in the constant electric and magnetic fields@8#.

Energetic relations for chiral and bianisotropic med
have been the subject of many publications. In@1,2,42# the
energy balance equations were considered for the ti
harmonic fields; in@46,47# we have investigations for the
quasimonochromatic fields in lossless temporally dispers
bianisotropic media. The analyses in@46,47# are based on the
assumption that one can obtain quadratic forms in Poyntin
theorem for bianisotropic media similarly to the terms in E
~18! obtained for anisotropic media. Obviously, the result
@46,47# may be interpreted as just an extension of a sim
expression for the energy for bianisotropic media.

The situation, however, is not so trivial. A careful analys
of averaged quadratic forms in Poynting’s theorem@33#
shows that the energy balance in bianisotropic media is
termined not only by the material constitutive parameters
also by the structure of the electromagnetic field. Taking i
account that a tensor of the second rankAi j can be written as
a sum of HermitianAi j

H and anti-HermitianAi j
aH tensors, one

can see that for any two tensorsAi j and Bi j , a contraction
Ai j

HBi j
aH is an imaginary quantity and, at the same time, co

tractionsAi j
HBi j

H andAi j
aHBi j

aH are real quantities. This known
fact leads us @for the quasimonochromatic fieldsE
5Em(t)eivt andH5Hm(t)eivt# to the following representa
tion of Poynting’s theorem for temporally dispersive bianis
tropic media with constitutive tensorse~v!, j~v!, z~v!, and
m~v! @33#:

2¹W •SW̄ 5Q̄~v,t !1P̄. ~19!
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Equation~19! does not have the continuity-equation for
of Eq. ~18!. To reduce Eq.~19! to the form of Eq.~18!,
necessary constraints to the structure of the quasimonoc
matic field have to be imposed. These constraints are@33#

Emi
*

]Hmj

]t
5Hmj

]Emi
*

]t
. ~20!

Based on Eq.~20!, one can represent the termQ in Eq. ~19!
as

Q̄~v,t !5
]W̄

]t
, ~21!

where

W̄5
1

4 H ]~ve i j
H!

]v
Ei* Ej1

]~vm i j
H!

]v
Hi* H j

1
]@v~z i j

H1j i j
H!#

]v
~Hi* Ej !

H

1
]@v~z i j

aH2j i j
aH!#

]v
~Hi* Ej !

aHJ . ~22!

Thus, when constraints~20! take place we can rewrite Eq
~19! in the form of Eq.~18!. In this case, we may identifyP̄
as a term that describes dissipative losses. The lossless
may be characterized by different systems of relations.
example, the first system is

e5e1,

m5m1,

j5z1, ~23!

where the plus superscript denotes the transpose and
complex conjugate procedure. The second system ma
written, for example, as

e5e1,

m5m1, ~24!

~z i j
H2j i j

H!~Hi* Ej !
aH1~z i j

aH1j i j
aH!~Hi* Ej !

H50.

Relations~23! are well known@1,42,46,47#. These relations
mean that the termP̄ vanishes for all possibleE and H
fields. In contrast, relations~24! demonstrate a certain corre
lation between the field structure and the constitutive par
eters of a medium that provides nondissipative propaga
of the electromagnetic wave. For lossless or weakly abs
ing media, one can conventionally interpret the termW̄ de-
scribed by Eq.~22! as the average density of the energy. T
main feature is that this term is defined not only by t
structure of a medium~the structure of the constitutive pa
rameters! but also by the structure of the electromagne
field.

A quadratic form makes sense of the energy when
process of variation of this quadratic form has a cert
physical interpretation. In our case, this physical interpre
ro-
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tion is contained in Poynting’s theorem~18!. In anisotropic
media, variation of the energy in a given point is due
variation of amplitudes of the electric and/or magnetic fie
and these variations could be completely independen
each other. To vary the energy termW̄ in bianisotropic me-
dia, a certain time-domain correlation between amplitudes
the electric and the magnetic fields is essential. Neces
constraints on the structure of the amplitudes of the qu
monochromatic field could be imposed since these am
tudes are slow~in comparison to the period 2p/v! functions
of time.

There is an evident possibility to represent constrai
~20! as

Emi
* ~ t !

Hmj
~ t !

5
]Emi

* ~ t !/]t

]Hmj
~ t !/]t

5
dEmi

* ~ t !

dHmj
~ t !

, ~25!

wheredEmi
* (t) and dHmj

(t) are differentials ofEmi
* (t) and

Hmj
(t), respectively. Expression~25! may be written in a

linear form

Emi
* ~ t !5Fi j Hmj

~ t !. ~26!

The tensorFi j , being time independent, characterizes t
structure of the quasimonochromatic field.

Let us consider a particular case when

Em~ t !5E0e2 iv1t, Hm~ t !5H0eiv1t, ~27!

whereE0 andH0 are constant vectors andv1!v. It is evi-
dent that in this case the constraints~20! and ~26! are satis-
fied identically.

The physical meaning of the constraints~20! and ~26! is
quite clear. Let for timet1 a system have the density of th
energyW̄(1), which is defined by expression~22!. For certain
constitutive parameters, this energy may be obtained fr
different structures~configurations! of the quasimonochro-
matic field. We conventionally denote these field structu
as statesa,b,... . Let fortime t2 the system have the densit
of the energyW̄(2). In accordance with the field constraint
the transitionW̄(1)→W̄(2) should be accompanied not on
by variation of amplitudes of the fields but by rebuilding
the field structures as well. New field structures~we suppose
that constitutive parameters are invariable! should be charac-
terized as statesa8,b8,..., which are obtained due to cer
tain rules ~field constraints! for rebuilding the field struc-
tures: a→a8,b→b8.... . Our explanations may be illus
trated by the qualitative diagram (ReEmi

* versus ReHmj
),

shown in Fig. 1. In this diagram the transitionsa→a8 and
b→b8 are depicted by straight lines@because of relations
~26!#. The linesW̄(1) andW̄(2) correspond to different levels
of the energy.

Contrary to anisotropic media~see@8#, where thermody-
namic aspects of the internal energy of a body in the hi
frequency electromagnetic field are discussed!, the average
density of the energyW̄ for microwave bianisotropic media
does not have the physical meaning of the density of
internal energy in the electromagnetic field, similar to t
density of the internal energy in constant electric and m
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netic fields. Dzyaloshinskii has found the free energy o
magnetoelectric medium in the constant electric and m
netic fields@48#. It is not completely evident that, for micro
wave bianisotropic media, the average densityW̄ expressed
by Eq. ~22! can be physically reduced to the free ener
described by Dzyaloshinskii whenv→0. That is why it is
impossible to introducea priori the notion of the density o
the internal energy of microwave bianisotropic materials
the electromagnetic field and to derive conditions for con
tutive parameters based on the positive definite energy fu
tion ~as it has been done in@46,47#!. Another argument tha
the average energy density for causal bianisotropic mate
cannot be reduced to Dzyaloshinskii’s free energy has b
adduced in@49,50#.

One can correlate the properties of nonthermodyna
fluctuations with the quantities characterizing the behavio
a body under certain actions of time-dependent exte
fields. This is possible when we are able to distinguish a p
of the total Hamiltonian correlated with external forc
@8,29#. In bianisotropic composites described in@22–24#, ev-
ery small particle is a ferromagnetic resonator with sho
wavelength magnetostatic wave oscillations. These magn
statically controlled oscillating processes in a bianisotro
particle have scales of space variations much less~about two
to four order of magnitudes! than the corresponding scales
the external electric and magnetic fields. This makes it p
sible to distinguish the intrinsic magnetostatic mode fie
and the external fields@10,51#. That is why, in these com
posite materials~which are in factoscillatory media!, we can
obtain the Hamiltonian of every particle of a system a
distinguish a part of the total Hamiltonian correlated with t
external fields. It becomes clear that for such bianisotro
composites as MCBMs@22–24#, the termW̄ in Eq. ~18! has
the physical meaning of the average density of electrom
netic energy. The same consideration is applicable for
ECBMs @25#.

IV. DISCUSSION

The MCBMs and the ECMBs are compositions of micr
scopic oscillators and the quantum mechanical models
be applicable to describe dynamical perturbations of a s
tem of these oscillators by an external action. The appar

FIG. 1. Qualitative diagram of the field structure rebuildin
correlated with the energy variation.
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of a density matrix, well developed in quantum mechani
may be used to find averaged dyadic polarizabilities of
MCBMs or ECBMs. It demands the solution of the Liouvill
equation for the density matrix of a bianisotropic body e
cited by the external electric and magnetic fields similar
an analysis made for a dielectric body excited by the exte
electric field@52–54#. To make such an analysis, a quantu
theory of the interaction of quasistatic bianisotropic me
with the external fields has to be developed. This gene
theory should be a subject for future efforts. We will tou
upon only some of the main aspects of this treatment.

One can suppose that to define energy levels of ev
bianisotropic particle, a symmetry analysis should be u
similar to an analysis applied for the classification of m
lecular terms@52#. This analysis is impossible, however, fo
bianisotropic particles that exist in two different configur
tions that cannot be superimposed by the application of
tations or translations~enantiomers!. In a quantum mechan
ics description of optical activity, the remaining questio
are, Can the existence of optically active~chiral! molecules
be explained in quantum mechanics? Why are chiral m
ecules never found in energy eigenstates? There are m
efforts to account for the instability of chiral molecule
@55,56#. Thus, in our case, one should be aware that
classification of energy eigenstates based on a symm
analysis is applicable only for bianisotropic particles witho
symmetry breaking. However, can an analysis of bianiso
pic particles without symmetry breaking be carried out sim
larly to an analysis applied for classification of molecu
terms? Let us turn our attention to a bianisotropic parti
based on geometrically symmetrical magnetostatic w
resonators with surface metallization described in@22,23#.
This particle can be represented as a glued pair of magn
and electric dipoles~the magnetic dipole is due to the bod
of a ferromagnetic resonator and the electric dipole is du
special-form surface metallization!. Thus an apparent ques
tion arises, Can one consider this particle as a combinatio
two ~initially independent! resonance structures? The fir
structure is a straight-edge ferromagnetic resonator with
surface metallization and the second structure is a trap
energy resonator~an energy trapping is due to a metall
region on a surface of an unrestricted ferromagnetic film!.
When such a combination is possible, one can introd
separate terms and analyze an intersection of these t
depending on a certain parameter~or a system of param
eters!. Such an analysis used for a two-atom molecule sho
in particular, that two terms of identical symmetry do n
have an intersection@52#. Can this conclusion be applied fo
an initial characterization of symmetry properties of
straight-edge ferromagnetic resonator and a trapped en
resonator and, as a result, the properties of a bianisotr
particle? The situation is not so simple. We can see t
every bianisotropic particle is not a mechanical junction
straight-edge and trapped energy resonators. This mak
necessary to analyze the symmetry properties of a particl
the whole without any initial decomposition.

In this consideration, another problem also arises. As
have shown, to vary the average density of the energy
bianisotropic media, a necessary correlation between com
nents of the electric and magnetic fields should take pla
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For this reason, the interaction Hamiltonian~a part of the
total Hamiltonian correlated with the external fields! in the
Liouville equation cannot be considered as a superpositio
the ‘‘electric’’ and ‘‘magnetic’’ parts and should be intro
duced as a ‘‘whole’’ notion of the magnetoelectric intera
tion Hamiltonian.

V. CONCLUSION

It is evident that the electrodynamics of bianisotropic m
dia is a very topical sphere of research. The fact that i
e-

ce
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medium we may have an additional~with respect to the
Maxwell equations! coupling between the electric and ma
netic fields promises to produce very attractive fundame
problems. One has to be sure, however, that the results
tained and published in this sphere of research are re
based on the main theoretical principles of macroscopic e
trodynamics. So discussions about the main theoret
propositions of the macroscopic electrodynamics of biani
tropic media are very urgent. In this paper we tried to fo
mulate some of these principles and to direct attention
bianisotropic composite materials that can meet the requ
ments of the laws of the macroscopic electrodynamics.
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