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Quasistatic principles in the macroscopic electrodynamics of bianisotropic media

E. O. Kamenetskii
Faculty of Engineering, Department of Electrical Engineering—Physical Electronics, Tel Aviv University, Tel Aviv 69978, Israel
(Received 24 March 1998; revised manuscript received 9 September 1998

Only very few theoretical results in macroscopic electrodynamics of bianisotropic composites have neces-
sary experimental justifications. This fact, it seems, is not accidental. Artificial bianisotropic materials based on
a composition of helices an@ particles do not meet the requirements of macroscopic electrodynamics of
condensed media. Our standpoint is based on the principle that in the description of the electromagnetic
properties of a bianisotropic medium, one has to be able to separate the microscopic and macroscopic levels of
consideration. In other words, specific properties of a bianisotropic medium should be defined separately from
macroscopic Maxwell’s equations. In this paper we formulate some principles that should underlie the main
laws of macroscopic electrodynamics of bianisotropic media. Our consideration is based on the notion of two
types of dual quasistatiguasimagnetostatic and quasielectrostdiianisotropic particles.
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[. INTRODUCTION netic activity at microwave frequencies, analogous to the op-
tical activity. As a further generalization of such media,
At present, the electrodynamics of bianisotropic artificialartificial bianisotropic materials based on a composition of
media(and chiral media, as a particular casedeveloping helices and) particles were introduced as well. It becomes
extensively. We are witnesses to a vast number of publicaclear, however, that these composite materials are beyond the
tions concerning different aspects of the electromagneti¢aWs that form the basis of macroscopic electrodynamics of
theory of these media. For any newcomer in this area ofondensed media.
science, two main theoretical questions, it seems, ari&: The main principles of macroscopic electrodynamics are
how to calculate the effective-mediufoontinuum param- based on the fact that one can separate the microscopic and
eters(linear and nonlinearof artificial bianisotropic media Macroscopic levels in the description of the electromagnetic
and (b) how to solve classical electrodynamics problemsProperties of a medium. Because of the natural scale of
(scattering, diffraction, etg.in different structures with bi- lengths in media, one can use only those variables that have
anisotropic materials. If, however, this newcomer is attentivdhe Fourier-spectrum components in thepace(of the elec-
enough, it will be seen thaat least in the microwave regipn tromagnetic waves in a mediynup to some limiting cutoff
a large list of theoretical papers on the electrodynamics ofvave numbekK (1/K corresponds to the maximum scale of
bianisotropic media is accompanied by a not so high numbeihaterial nonhomogeneityin other words, only those Fou-
of experimental works. Moreover, only few theoretical re-fier components wittk<<K are relevant to the macroscopic
sults have the necessary experimental justifications. Mainlyproblem. If
there are experiments to demonstrate the ability to rotate the
plane of polarization of the electromagnetic wave, the reflec- k<K, 1)
tion, and transmission coefficient measurements. One can see
that these experiments are far-zone, or at least intermediatese can almost certainly treat a system as a continuum. Re-
zone, reflected field investigations. To the best of the autation (1) (which Robinson characterized as the truncation
thor’'s knowledge, there are no experimental works on microprocesg6]) is, as a matter of fact, the quasistatic approxi-
wave bianisotropic structure@he structures that contain mation. The field vectors and constitutive parameters in the
materials described by bianisotropic constitutive relafitas macroscopic Maxwell equations are obtained on the basis of
verify theoretical results concerning near-zoggasistatit ~ the averaging procedure on scales much less than the mac-
reflected field investigations. Nobody has published experiroscopic wavelength. Because of the averaging procedure,
mental works of stratified bianisotropic media, dispersionthe electromagnetic boundary conditions can be introduced
characteristics of bianisotropic rectangular, or strip-lineon interfaces of condensed medi&8].
waveguide structures, field singularities at edges in bianiso- Do chiral materials and bianisotropic composites based on
tropic media, etc. Is this lack of microwave experiments achelices and() particles meet the requirements of the main
cidental? Is the fact that now, after ten years of intensiveprinciples of macroscopic electrodynamics? Are we able to
research in this area of science, no known microwave deseparate the microscopic and macroscopic levels in the de-
vices based on chiral and bianisotropic materials work ascription of these materials, as it is usually assumed in mac-
such accidental as well-5]? roscopic electrodynamics? One can see that in chiral materi-
In the microwave range, chiral and bianisotropic materialsals and bianisotropic composites, the fact that the phase of
are particulate composites. Artificial chiral medised on a  the electromagnetic wave is different for different parts of a
composition of small helices in the host materiakere de- particle is essential, that is, nonlocal effects in these media
veloped to demonstrate the phenomenon of the electromagre essential. A special feature of these materials is that we
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introduce constitutive relations that in fact connect the macit is impossible to use the procedure of wave-number trun-
roscopic field vectorsiot separately from the macroscopic cation and the averaging procedure. The quasistatic approxi-
Maxwell equationsFor this reason, the parameters of chiral-mation (1) does not work in this case. An analysis of the
ity or bianisotropy are, at the same time, measures of nonldknown properties of chiral anf particles shows that these
cal effects. The authors of numerous works where differenparticles are not quasistatic oscillators. Only in the far-zone
electrodynamics problems with chiral and bianisotropic ma+egion can one consider these particles as a combination of
terials(described by the constitutive relatiorase solved for-  the electric and magnetic dipoles. In the near-field zone, we
mally analyze these problems as if no aspects of nonlocalitgo not have a combination of such dipold®—21]. This is
exist. Here are some curious examples. the main reason why constitutive relations used for compos-
There is a well known problem in electrodynamics con-ites based on helices 6l particles characterize, in fact, the
cerning correct boundary conditions to match fields on twagas of scatterers. We have an example of a phenomenologi-
sides of the layer with nonlocal properties. One has to takeal description of a diffraction structure rather than a con-
into account that because of the effects of spatial dispersiotinuous medium. The laws of macroscopic electrodynamics
the order of differential equations increases. This demandare not completely applicable in this case. This puts forth
the use of the so-called additional boundary conditiios  questions about generalized susceptibilities, energy relations,
gether with the electrodynamical boundary conditjo®ich  boundary conditions, etc., for microwave bianisotropic me-
boundary conditions do not have a universal character andia.
are found on the basis of the microscopic theory. For differ- It becomes clear that for bianisotropic artificial media, the
ent types of interfaceén plasma, ferromagnetics, and opti- main propositions that underlie the laws of macroscopic
cally active crystals one has different additional boundary electrodynamics should be considered. In contrast to dilute
conditions[8—11]. For chiral andQ) materials, this problem bianisotropic composites based on helices énhgarticles,
is solved very “simply.” One can see, for example, that thewe introduce the notion ofondensed mattebianisotropic
symmetrical form of the Drude-Born-Fedorov constitutive composites. Evidently, one cannot talk at present about the
relations makes it possible to obtain the boundary conditionsnacroscopic electrodynamics of microwave bianisotropic
requiring the continuity of tangential components of the media until the electrodynamically macroscopiondensed
andH fields across the bimaterial interface, but not continu-matte) bianisotropic materials have been synthesized. This
ity of the normal components of tHe andB fields. Thisis  problem, however, cannot be solved until the main theoreti-
explained by Lakhtakigsee[2], p. 136 as follows. The cal principles of condensed matter bianisotropic composite
boundary conditions on the normal components ofhend  materials have been formulated. Our standpoint is based on
B fields are necessary and sufficient for static problems. Bethe principles that specific properties of a bianisotropic me-
cause electromagnetic chirality cannot exist for static probdium have to be defined separately from macroscopic Max-
lems, it is very satisfying that the Maxwell curl postulates, well's equations. Because of this possibility to separate the
unaided by extraneous considerations, give rise to the necefield and medium equation@ other words, to separate the
sary and sufficient boundary conditions that involve only themicroscopic and macroscopic levels in the description of the
E andH fields. electromagnetic properties of a mediynthe so-called ef-
This statement infringes the laws of macroscopic electrofects of temporal and spatial dispersion can be considered for
dynamics, which require four boundary conditions to be satmedia characterized by specific time and space scales. The
isfied: two for the tangential components of tkeand H main point is that the constitutive parameters of bianisotropic
fields and two for the normal components of theand B media should be describeguasistatically (quasimagneto-
fields. If the boundary conditions involve only teandH statically or quasielectrostatically
fields, one cannot distinguish, for example, the problems The main concept that underlies our microscopic descrip-
with and without a surface charge density at the interfacetion of bianisotropic media ishe concept of magnetostati-
Moreover, what does the continuity equation for charge deneally and electrostatically controlled bianisotropic particles
sity and current density mean in such a case? It becoméeghese particles are small resonance structures with short-
apparent that many boundary problems solved recently fowavelength(for example, magnetostatic waves in ferromag-
chiral media and bianisotropic compositésr example, an netics or elastodynamic quasielectrostatic waves in piezo-
analysis of singularities in Green’s dyadigs2—19, field electricg oscillations. While the magnetostatically controlled
singularities at edgdd 6], [17], waveguide step discontinui- bianisotropic material§MCBMSs) have been considered in
ties [18], and many other boundary problenae far from previous workg22-24, an analysis of the electrostatically
physical reality and may be considered as examples of inteicontrolled bianisotropic materialEECBMs) is a different
esting but abstractfrom a physical point of vieyw ap-  proposition by the present authi@5].
proaches. Doubt is cast on the validity of the formal exten- The paper is organized as follows. In Sec. Il we show that
sion of the known electrodynamical problems solved forthe so-called integral-form constitutive relatiol€Rs) for
isotropic and anisotropic materials with local properties tobianistropic media considered in many publications can be
such nonlocal media as chiral media and bianisotropic comdsed only when microscopically defined generalized suscep-
posites based on helices afidparticles. tibilities are applicable. As we will show, it is possible for
We can see that because of the space-resonance propertiegh “local media” as the MCBMs or ECBMs, but impos-
of composites based on helices afldparticles(caused by sible for bianistropic media with nonlocal propertigmsed
the first-order role played by the size parameigasn the  on helices o) particles. The electromagnetic field energy
emergence of the magnetoelectric properties; lzeie the  in microwave bianisotropic media is the subject of Sec. Ill.
particle size andj is the wave number in the host mateyjal In many works, the energy relations in microwave bianiso-



7967

PRE 58 QUASISTATIC PRINCIPLES IN THE MACROSCORI. ..

tropic media are considered as just an extension of similar When a bianisotropic medium is time invariant and spa-
relations used for anisotropic media. A careful analysis, howtially homogeneous, the ICRs have a temporal and space
ever, shows that the situation with bianisotropic media isconvolution form. For example, for E§3) one can write
fundamentally different. The notion of quasistatically con-
trolled bianisotropic media is essential in this consideration. D(w,k)=€(w,k)-E(w,k)+ & w,k)-H(w k),
Section 1V is devoted to a discussion about the dynamical
perturbation of a system of quasistatic bianisotropic par-

ticles, which is a composition of microscopic oscillators.
Section V contains concluding remarks.

B(w,k)=8 w,k)-E(w,k)+ m(w,k) -H(w,k). ©

To the best of the author's knowledge the ICRs for bi-
anisotropic media were introduced for the first time by Horn-
reich and Shtrikman for a hypothetical situation of the opti-
cal effect of gyrotropy in magnetoelectric crystdl32].
Nobody has realized this situation in physical experiments.
The present author used the ICRs to analyze the energy bal-
ance equation in bianisotropic media3]. Lakhtakia and

It is known that the effect of optical activity may be char- Weiglhofer formally considered the ICRs in bianisotropic
acterized in two ways: as a separate phenomenon in so-callededia as “the most general linear relations that can describe
chiral media(see[1,2] and numerous references in theseany linear medium—indeed, the entire universe after linear-
books or as a particular case of a general effect of spatialzation” [34]. In [35], the ICRs were used in the theory of
dispersion in dielectric medig,9]. For temporally and spa- perturbation for an analysis of the effective constitutive pa-
tially dispersive dielectric media, the ICRs are used. Wherrameters in a bi-isotropic continuum.
this medium is time invariant and spatially homogeneous, the Our standpoint is that we should try to clarify the physical
dielectric tensore(w,k) can be introduced. In the long- essence of the phenomena and only afterward build a math-
wavelength approximation, the temporally and spatially disematical approach based on the physical theory. Otherwise,
persive dielectric medium becomes only temporally disperone may obtain abstract mathematical exercises that are far
sive, that is, the quasistatic limifk] —0) exists. One can from physical reality. First of all, the question arises, what
take advantage of the power-series expansion of the constire the physical assumptions to have the convergence of in-
tutive tensor ovek in the region neafk|=0 [8,9]. We also  tegrals in the ICRs for time-invariant and spatially homoge-
have other examples. In disorder dielectric composites, wheneous bianisotropic media? The reaction of a causal medium
the effects of spatial dispersion are taken into account, th& dependent on previous values of the fields because of the
long-wavelength(quasistatig limit is used to compute the finiteness of a time reorganization of all the system of di-
effective permittivity tensof26—28§. poles. In fact, such a “memory” is retained during the time

A calculation of tensore(w,k) in continuous media is of system relaxatio, . Therefore, the response functions
based on a microscopic theory. It may be the quantum medecrease rapidly for—t’'>T,. On the other hand, we may
chanical theory based on a perturbation theory and the notiolave a nonlocal connection between the fields and the system

II. INTEGRAL-FORM CONSTITUTIVE RELATIONS
AND GENERALIZED SUSCEPTIBILITIES
IN BIANISOTROPIC MEDIA

of a generalized susceptibilit8,11,29. In dipole crystal

lattices, Edward’'s method of separation of the long-

wavelength(macroscopitand the short-wavelengimicro-
scopiq electric fields may also be applig80]. In the present

reaction. The response functions have to decrease when the
difference|r —r’| increases. All this means that we have to
consider the influence ahort-time and short-space electro-
static and magnetostatic interactiorsetween particles on

author’s recent worf31], the so-called sampling theorem the polarization properties of a bianisotropic medium. In this
was used to develop a dynamical theory and calculate thease, the kernelse;;(t',r'), &;(t',r'), ¢;(t’,r’), and
effective parameters of dielectric crystal lattices. wij(t',r") of the integral operators in E¢8) (and, similarly,

The ICRs for bianisotropic media may be formally intro- the kernels of the operators in other forms of the ICR®
duced in various forms for example, as the “responses” of a medium to th&function electric and
magnetic fields.

Based on our consideration, we introduce the notion of
the local temporally dispersive bianisotropic mediaT-
DBM). The LTDBM are characterized by constitutive pa-
rameters satisfying the long-wavelendifuasistati¢ limit.
This means that for constitutive tensors used, for example, in
Eq. (5), one can writg 36]

Di(t,r)=(a;j°Ej) + (Bij°B;),
2
Hi(t,r)=(¥ij°Ej) + (»ij°B;)

or

E((l),k)||k|_>0—> e(w),

g(ka)hk\ao—@(w),

When the limit(6) takes place, we can take advantage of the
power-series expansion of the constitutive tensors &vier
the region neafk|=0. That is, the effects of spatial disper-
sion are considered asnall-order effectssimilar to the ap-
proach used if8—11] for isotropic and anisotropic media.

A full answer to the question whether the LTDBM can be
physically realized or not should be found from a micro-

g(w!k)||k|—>0_>§(w)v

Di(t,r)=(€;°Ej) + (&j°H)),
3 ©

Bi(t,r)=(Zij°Ej) + (mijoH)).

On the right-hand sides of expressidis and (3), we have
the integral operators similar to the integral operator

t
eijoEJ:f_ dt’f dr’e;(t,r,t’,r )E;(t',r’). (4)
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microscopic level, let us take advantage of the notion of a

generalized susceptibility widely used in macroscopic elec-

trodynamics. In the case of dynamica] perturbations qf aSYS~ \we correlate this expression with the expressib® for

tem, an external action can be described by the exciting O time variation of the energy caused by the external exci-

erator in the total Hamiltoniaf8,11,29 tation. One can consider the components of vedibendB
(1) = —x:£:(1) @ as two generalized forces and the components afidH as

A two series of quantities characterizing a system. Let us sup-
pose that constitutive relations are written as

scopic analysis. To consider the problem of the ICRs on the JD JB
f E 3 +H E) dv.

wherex; is a series of quantities characterizing a systeis,
an operator of a given physical quantity, af@t) are gen- t
eralized forces dependent on time. The average quantitieEi(t)=f
X(t) are represented by a linear integral-operator form

dt,eij(t_t,)Dj(t,)+ft dt,f”(t_t,)BJ(tl),
(13

t t t
Yi(t)=fﬁrxdt’aij(t—t’)fj(t’). (8) Hi(t):jﬁxdt,gij(t_t’)Dj(t’)"‘Jloodt’hij(t_t,)Bj(t’)-

One can rewrite this relation for the Fourier components ~ Similarly to an analysis made if8] for anisotropic media,
one can obtain the symmetry relations of constitutive tensors

Xi(w)=ajj(0)fj(o). (9)  in bianisotropic media. When the components of Ehéeld
from one side and the components of tHefield from the
The functiona;; completely defines the behavior of a systemother side are considered independent, we can use the prin-
under an external action. This function is called generalizeql;ip|e of kinetic coefficient Symmetrﬁhe Onsager-Casimir
susceptibility. When a linear integral relatié8) has the nec-  principle) [37,38 to characterize the symmetry properties for
essary physical foundation, the time variation of the energyonstitutive tensors. In this case, we have for tensors in ex-

(caused by the external excitatjomay be expressed as pression(13)
aw_ - df &j(.Ho) =&;(,~Ho)
—_— =X — jrstio i\ 0/s
T Xi gt (10

hij(@,Ho) = h;ji(w,—Ho), (14)
For a dielectric medium, the functidmrmay be interpreted
as the external electric field andas the electric dipole mo- fij(w,Hg)=—gji(w,—Hop),
ment induced in this fiel@i8]. Now we extend our consider-
ation to the general case of a bianisotropic medium. WhetvhereHy is the external bias magnetic field. For spatially
the fields of interactions between particles are described blispersive bianisotropic medig3], these relations can be
scalar potentials, one can write for the exciting operator irextended as

the total Hamiltonian
&ij(w,k,Ho) =eji(w, —k,—Hy),

H'(t)=—E;(t)p;—H(t); 11
(t) i(DPi—Hj(t)m; 11 i (@, Ho) = i@, —k, — Ho), 15
wherep and m are operators of electric and magnetic mo-
ments, respectively. The average quantities are represented fij(w,k,Ho) = —gji(w,—K,—Ho).
as So for constitutive relations written as
t t
mo= [ dvayt-tE @)+ [ by a-tom), E(0,k)=&(w,k)- D(w,k) + (k) B(w,k),
- o (16)
t t (12 H(w,k)=g(w,k)-D(w,k)+h(w,k)-B(w,k),
m;(t)= f_xdtlcik(t_t/)Ek(t’)+ f_mdt/dik(t_t/)Hk(t,)' the Onsager-Casimir principle gives
=—al
Based on relation§l2), one can write, as a result, integral- e=e,
form relations(for temporally dispersive bianisotropic me- h=hT,
dia). So the ICRs formally defined for bianisotropic media 7 - 17
= —g .

can be reduced to microscopically defined generalized sus-

cept|b|l_|t|es. This is possible when a blan|s<_3trop|p particle IS,are a tilde denotes the time reversal dhdenotes transpo-
found in energy eigenstates and the particle fields can bgition
described by the Hamiltonian and the exciting operator in the ‘ . . , . .
0 X X One obtains the following relationship between constitu-
total Hamiltonian of a system of particles can be introduced.,. : . .
tive tensors in expressiorts) and (16):

The notion of generalized susceptibilities obtains a pecu-
liar sense for the electromagnetic field energy in media. The [1—ee—f-& L-[e &+f p]
time variation of the electromagnetic energy of a bianisotro-
pic body is expressed as —[g-et+h-& Y- [I-g-é&h-u]=0,
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where | is the unit dyadic. It is not entirely evident that tion in media. For bianisotropic media, the notion of LT-
symmetry relations for tensors in expressi@h will have a  DBM plays a very important role in a physical meaning of
form similar to relations(16). So the formal use of the the energetic relations. Several important microscopic as-
Onsager-Casimir principle for constitutive tensors in exprespects of LTDBM become understandable based on the ener-
sion (5) (as it has been done 189,40 can hardly be ad- getic relations.

missible. We have shown “macroscopically” that the ICRs When a medium is characterized by constitutive param-
are applicable only for LTDBM. Based on the notion of gen- eters and the wave process is described by Maxwell’'s equa-
eralized susceptibilities, we also have shown how the ICR$ons, the well known procedure leads us to the energy bal-
are physically admissible on a microscopic level. Now let usance equation. For anisotropic media with local properties,
apply our analysis to the known types of bianisotropic me-one had8]

dia.
We can see that LTDBM are distinguished, in principle, L= oW
from natural magnetoelectric crystal§41,42 and -V.S=—+7P. (18

piezoelectric-piezomagnetic magnetoelectric compopités o

(which are, as a matter of fact, nontemporally dispersive ma- )
terialg, chiral media and bianisotropic composites based on There are fundamental issues that one should be aware of.

helices and) particles[1,2] (which are nonlocal medjaand ~ ©One€ can interpret the terms in EA.8) only for weakly ab-
moving dielectric-magnetic materia[#1,42. So the ICRs  sorbing media. In this casgis interpreted as the averagmn

cannot be applicable for these media. the period 27/ w) Poynting vectorW as the average density

One can also find other arguments against the possibilit : o
of using the ICRs in nonlocal bianisotropic media. In com-%f the energy, _an_GP as th_e average density of the d|SS|pat|on
losses. The dissipation itself may not be so weak, but this

ments[45] on Ref.[44] it was pointed out that in nonlocal gissipation has to be strongly reduced by choosing the cor-

bianisotropic media, the kernels in cross terms in the ICR ) . ) 4
are not independent, but proportional to that in the coterm esponding frequency reg|on.'Th|.s means that the field must
’ e closed to a monochromatic field. On the other hand, to

and therefore this leads to double inclusion of the same ef=~ . S -
erive the energy balance equation, it is insufficient to con-

fects in the model. Formal use of the ICRs without necessarg. oo . .
ider pure monochromatic fields since no accumulation of

physical justification may lead to incorrect results. For ex- he el . K | in thi There-
ample, doubt is cast on the validity of the effective constitu—t ee ectroma_gnet|c energy_ta €s place in t. IS case. There
tive operators used if85] to calculate the long-wavelength fore, the guasmonochromatlc electrpmagnetlc fields are usu-
effective parameters of chiral media. ally conS|dered_. The average den§|ty of the energy in Eq.

518) has a physical meaning of the internal energy of a body

There are other arguments that arise from the notion of L .
generalized susceptibility. Bi-isotropic media, natural mag-!n the eleciromagnedic field similarly to the energy of a body

netoelectric crystals, and known microwave chiral and bi-" the constant electric and magnetic fie[@3.

anisotropic composite materials based on helices(amer- Energetic reIatio_ns for chiral anq b_ianisotropic media
ticles do not meet one of the main requirements thave been the subject of many publications[ 112,47 the

macroscopic electrodynamics of causal condensed medi nhergy balance equations were considered for the time-

separation of the microscopically and macroscopically dy- armonic fields; in[46,47 we have investigations for the
Iﬂuasimonochromatic fields in lossless temporally dispersive

namical levels of consideration. For these media, one cann Sotroni dia. Th lysed 6,47 based on th
describe a dynamical perturbation of a microscopic syste lanisotropic media. 1he analyse .~ are based on the

by the exciting operator in the total Hamiltonian and there_assumption that one can obtain quadratic forms in Poynting’s

fore introduce the notion of a generalized susceptibility. Sc;[heorem for bianisotropic media similarly to the terms in Eq.

the ICRs are not physically admissible for such media. (18) obtained fo_r anisotropic m_edia. Obviousl_y, the res_ult_of
We have another situation for MCBMs and ECBMSs. The[46,47_| may be interpreted as just an extension of a similar

MCBM particle and the ECBM particle are tliuasistatic exp_}rﬁssen ftgr thﬁ energy for bLanlstqtrp;I)lt':Amem?.l Vsi
oscillators that are found in energy eigenstaté3ne can € situation, NOWEVET, 1S Not SO trivial. A careiul analysis

distinguish the internal fields of a particle and the externaPL avert(;l]g(tectihquadratlcbfolrms n Epyr_\tlntg’s _theorg_ﬁﬁ]_ d
fields and consider excitation of quasistatic oscillations b)f owsS da i N lensr% aa?ce :n 'a?.'tS?. ropic me Ita Isbet-
the external field$22—25. Since the MCBMs and ECBMs ermined not only by the material constitutivé parameters bu

are characterized by the quasistatic processes, these me&fﬁo by the structure of the electromagnetic field. Taking into
are LTDDM. One can obtain the Hamiltonian of’every par- account that a tensor of the second régkcan be written as

ticle and describe the dynamical perturbation of a system b§ Sum of HermitianA[j and anti-HermitianAj" tensors, one

the exciting operator in the total Hamiltonian. So the ICRs®@N S€€ that for any two tensobs andB;;, a contraction

and the notion of generalized susceptibilities are physicallyijBij 1S an imaginary qt:{anﬂty and, at the same time, con-

admissible for the MCBMs and the ECBMs. The OnsagerdractionsAjjBj; andAj"Bfj" are real quantities. This known

Casimir principle(17) is applicable to this case. fact leads us([for the quasimonochromatic fieldE
=E.(t)e'“t andH=H,,(t)e'“!] to the following representa-
tion of Poynting's theorem for temporally dispersive bianiso-

Ill. THE ELECTROMAGNETIC FIELD ENERGY tropic media with constitutive tensoew), &), {(w), and
IN BIANISOTROPIC MEDIA ,u(w) [33]:

An analysis of the energy balance equation is one of the —
powerful tools to investigate electromagnetic wave propaga- -V.-S=

(w,t)+P. (19)
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Equation(19) does not have the continuity-equation form tion is contained in Poynting's theore(i8). In anisotropic

of Eq. (18). To reduce Eq(19) to the form of Eq.(18),

media, variation of the energy in a given point is due to

necessary constraints to the structure of the quasimonochreariation of amplitudes of the electric and/or magnetic fields

matic field have to be imposed. These constraintq 28¢

JE}

* /. i
B 5t —Hm 5

(20

Based on EQq(20), one can represent the texgnin Eq. (19
as

— oW
Q(w,t)=W, (21
where
— 1 |dwel]) Houl)
T4 Jw e Jw HIH,

Hy M

+t9[w(§a.,+§.,)] 7
aH__ caH

+(7[w(§|] fl] )] (Hi*Ej)aH . 22

Jw

Thus, when constraintR0) take place we can rewrite Eq.

(19) in the form of Eq.(18). In this case, we may identif{

and these variations could be co_mpletely independent of

each other. To vary the energy tef in bianisotropic me-

dia, a certain time-domain correlation between amplitudes of
the electric and the magnetic fields is essential. Necessary
constraints on the structure of the amplitudes of the quasi-
monochromatic field could be imposed since these ampli-
tudes are slowin comparison to the periodw) functions

of time.

There is an evident possibility to represent constraints

(20) as

E;i(t) aE;i(t)/at dE*mi(t)
Hin, (0 - M (D3t - dHn, (D)

(25

WheredE’r;i(t) anddej(t) are differentials ofEﬁ]i(t) and
Hmj(t), respectively. Expressiof25) may be written in a
linear form

En (D) =FijHnm (1). (26)
The tensorF;;, being time independent, characterizes the
structure of the quasimonochromatic field.

Let us consider a particular case when

as a term that describes dissipative losses. The lossless case

may be characterized by different systems of relations. For

example, the first system is
€=€',
p=p,

&=, (23

Em(t) = Eoeiiwltr Hm(t) = HOeiwlt! (27)

whereE, andH, are constant vectors angh<w. It is evi-

dent that in this case the constraii®f) and(26) are satis-
fied identically.

The physical meaning of the constrair®0) and (26) is

quite clgar. Let for time, a system have the density of the
energyW™), which is defined by expressid@2). For certain

where the plus superscript denotes the transpose and t@nstitutive parameters, this energy may be obtained from

complex conjugate procedure. The second system may el

written, for example, as
€E—€ ,
u=p", (24)
(2= EDHFED™ M+ (1 + & (HFEpH=0.

Relations(23) are well known[1,42,46,47. These relations
mean that the ternP vanishes for all possibl& and H

fields. In contrast, relation®4) demonstrate a certain corre-
lation between the field structure and the constitutive param-

{fferent structureqconfiguration$ of the quasimonochro-
matic field. We conventionally denote these field structures
as states,b,... . Let fortimet, the system have the density

of the energyW(Z). In accordance with the field constraints,

the transitionW™)—W() should be accompanied not only
by variation of amplitudes of the fields but by rebuilding of
the field structures as well. New field structufe® suppose
that constitutive parameters are invarigtdbould be charac-
terized as statea’,b’,..., which are obtained due to cer-
tain rules (field constraints for rebuilding the field struc-
tures: a—a’,b—b’.... . Our explanations may be illus-
trated by the qualitative diagram (H&?r‘ versus ReHmj),

eters of a medium that provides nondissipative propagatiof"0Wn in Fig. 1. In this diagram the transitioas-a’ and
of the electromagnetic wave. For lossless or weakly absord?—b’ are depicted by straight lindbecause of relations

ing media, one can conventionally interpret the tande-

(26)]. The linesw® andW? correspond to different levels

scribed by Eq(22) as the average density of the energy. Theof the energy.

main feature is that this term is defined not only by the

Contrary to anisotropic medigee[8], where thermody-

structure of a mediuntthe structure of the constitutive pa- N@mic aspects of the internal energy of a body in the high-
rameter but also by the structure of the electromagneticfrequency electromagnetic field are discugsede average

field.

density of the energy_v for microwave bianisotropic media

A guadratic form makes sense of the energy when theloes not have the physical meaning of the density of the
process of variation of this quadratic form has a certainnternal energy in the electromagnetic field, similar to the
physical interpretation. In our case, this physical interpretadensity of the internal energy in constant electric and mag-
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Re(Emy) of a density matrix, well developed in quantum mechanics,
may be used to find averaged dyadic polarizabilities of the
MCBMs or ECBMs. It demands the solution of the Liouville
equation for the density matrix of a bianisotropic body ex-
cited by the external electric and magnetic fields similar to
an analysis made for a dielectric body excited by the external
electric field[52—54. To make such an analysis, a quantum
theory of the interaction of quasistatic bianisotropic media
with the external fields has to be developed. This general
theory should be a subject for future efforts. We will touch
upon only some of the main aspects of this treatment.
One can suppose that to define energy levels of every
Re(Hm) bianisotropic particle, a symmetry analysis should be used
S . ~ similar to an analysis applied for the classification of mo-
FIG. 1. Quahtatlve dlagram pf the field structure rebuildings lecular termg52]. This analysis is impossible, however, for
correlated with the energy variation. bianisotropic particles that exist in two different configura-
tions that cannot be superimposed by the application of ro-

netic fields. Dzyaloshinskii has found the free energy of a:[atlo;s or trgnslalflons_enalmtlor_n_er)s IE a quan_tu_m mecha_n-
magnetoelectric medium in the constant electric and mag/®S description of optical activity, the remaining questions

netic fields[48]. It is not completely evident that, for micro- &'€ Can the existence of optically actitehiral) molecules

i i ics? i -
wave bianisotropic media, the average den%ifyexpressed be (Iaxplalned ]|cn ql:ja_ntum mechqnlcs.t \tNh})' ?Le chiral mol
by Eg. (22) can be physically reduced to the free energyecu €S never found in energy €igenstatess 1here are many

described by Dzyaloshinskii whea—0. That is why it is efforts to accqunt for the instability of chiral molecules
impossible to introduce priori the notion of the density of [55’5_@,' Thus, In our case, one should be aware that the
the internal energy of microwave bianisotropic materials inclassification of energy eigenstates based on a symmetry
the electromagnetic field and to derive conditions for consti2nalysis is applicable only for bianisotropic particles without
tutive parameters based on the positive definite energy fun@ymmetry breaking. However, can an analysis of bianisotro-
tion (as it has been done [46,47). Another argument that pic particles without symmetry breaking be carried out simi-
the average energy density for causal bianisotropic materialgrly to an analysis applied for classification of molecular
cannot be reduced to Dzyaloshinskii's free energy has beeigerms? Let us turn our attention to a bianisotropic particle
adduced if49,50. based on geometrically symmetrical magnetostatic wave
One can correlate the properties of nonthermodynamicesonators with surface metallization described 22,23).
fluctuations with the quantities characterizing the behavior ofThis particle can be represented as a glued pair of magnetic
a body under certain actions of time-dependent externaind electric dipolesthe magnetic dipole is due to the body
fields. This is possible when we are able to distinguish a parf a ferromagnetic resonator and the electric dipole is due to
of the total Hamiltonian correlated with external forces special-form surface metallizatipnThus an apparent ques-
[8,29. In bianisotropic composites described #2-24, ev-  tion arises, Can one consider this particle as a combination of
ery small particle is a ferromagnetic resonator with shorttwo (initially independent resonance structures? The first
wavelength magnetostatic wave oscillations. These magnetatructure is a straight-edge ferromagnetic resonator without
statically controlled oscillating processes in a bianisotropicsurface metallization and the second structure is a trapped
particle have scales of space variations much (absut two  energy resonatofan energy trapping is due to a metallic
to four order of magnitudgshan the corresponding scales of region on a surface of an unrestricted ferromagnetic)film
the external electric and magnetic fields. This makes it poswhen such a combination is possible, one can introduce
sible to distinguish the intrinsic magnetostatic mode fieldsseparate terms and analyze an intersection of these terms
and the external fieldsl0,51. That is why, in these com- depending on a certain parameter a system of param-
posite materialéwhich are in facoscillatory medig, we can  eters. Such an analysis used for a two-atom molecule shows,
obtain the Hamiltonian of every particle of a system andin particular, that two terms of identical symmetry do not
distinguish a part of the total Hamiltonian correlated with thehave an intersectiof62]. Can this conclusion be applied for
external fields. It becomes clear that for such bianisotropi@n initial characterization of symmetry properties of a
composites as MCBME22—-24, the termW in Eq. (18) has  straight-edge ferromagnetic resonator and a trapped energy
the physical meaning of the average density of electromag€sonator and, as a result, the properties of a bianisotropic

netic energy. The same consideration is applicable for th@article? The situation is not so simple. We can see that
ECBMs[25]. every bianisotropic particle is not a mechanical junction of

straight-edge and trapped energy resonators. This makes it
IV. DISCUSSION necessary to analyze the symmetry properties of a particle on
the whole without any initial decomposition.

The MCBMs and the ECMBs are compositions of micro-  In this consideration, another problem also arises. As we
scopic oscillators and the gquantum mechanical models canave shown, to vary the average density of the energy in
be applicable to describe dynamical perturbations of a syshianisotropic media, a necessary correlation between compo-
tem of these oscillators by an external action. The apparatusents of the electric and magnetic fields should take place.
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For this reason, the interaction Hamiltoniéa part of the medium we may have an additionalith respect to the
total Hamiltonian correlated with the external fields the = Maxwell equations coupling between the electric and mag-
Liouville equation cannot be considered as a superposition dgietic fields promises to produce very attractive fundamental
the “electric” and “magnetic” parts and should be intro- problems. One has to be sure, however, that the results ob-
duced as a “whole” notion of the magnetoelectric interac-tained and published in this sphere of research are really
tion Hamiltonian. based on the main theoretical principles of macroscopic elec-
trodynamics. So discussions about the main theoretical
propositions of the macroscopic electrodynamics of bianiso-
V. CONCLUSION tropic media are very urgent. In this paper we tried to for-
mulate some of these principles and to direct attention to
It is evident that the electrodynamics of bianisotropic me-bianisotropic composite materials that can meet the require-
dia is a very topical sphere of research. The fact that in anents of the laws of the macroscopic electrodynamics.
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